Hohenberg-Kohn theorems in electrostatic and uniform magnetostatic fields.

نویسندگان

  • Xiao-Yin Pan
  • Viraht Sahni
چکیده

The Hohenberg-Kohn (HK) theorems of bijectivity between the external scalar potential and the gauge invariant nondegenerate ground state density, and the consequent Euler variational principle for the density, are proved for arbitrary electrostatic field and the constraint of fixed electron number. The HK theorems are generalized for spinless electrons to the added presence of an external uniform magnetostatic field by introducing the new constraint of fixed canonical orbital angular momentum. Thereby, a bijective relationship between the external scalar and vector potentials, and the gauge invariant nondegenerate ground state density and physical current density, is proved. A corresponding Euler variational principle in terms of these densities is also developed. These theorems are further generalized to electrons with spin by imposing the added constraint of fixed canonical orbital and spin angular momenta. The proofs differ from the original HK proof and explicitly account for the many-to-one relationship between the potentials and the nondegenerate ground state wave function. A Percus-Levy-Lieb constrained-search proof expanding the domain of validity to N-representable functions, and to degenerate states, again for fixed electron number and angular momentum, is also provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Structure: Density Functional Theory

Density functional theory (DFT) is a successful theory to calculate the electronic structure of atoms, molecules, and solids. Its goal is the quantitative understanding of materials properties from the fundamental laws of quantum mechanics. Traditional electronic structure methods attempt to find approximate solutions to the Schrödinger equation of N interacting electrons moving in an external,...

متن کامل

Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields.

We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wa...

متن کامل

Adiabatic Connection Approach to Density Functional Theory of Electronic Systems

Using recent calculations we review some well-known aspects of density functional theory: the Hohenberg–Kohn theorems, the Kohn–Sham method, the adiabatic connection, and the approximations of local nature. Emphasis is put upon using model Hamiltonians, of which the noninteracting or the physical ones are just particular cases. The model Hamiltonians allow us to produce multireference density f...

متن کامل

Density-functional approximations for exchange and correlation

Density-functional theory (DFT) is based on two pivotal theorems due to Hohenberg and Kohn [1]. The first theorem states that the ground-state density ρ(r) of a system of electrons uniquely determines the Hamiltonian and hence all properties that can be derived from it. Using mathematical language we can say that the total electronic energy of the system is a functional of the electron density,

متن کامل

Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 143 17  شماره 

صفحات  -

تاریخ انتشار 2015